
Situación del artificio en la naturaleza
Observemos a una hormiga labrarse laboriosamente un camino a través de una playa moldeada por el viento y las olas. Avanza, tuerce a la derecha para hacer más fácil su ascensión por un empinado montículo, da un rodeo para sortear un guijarro, se detiene un momento para un cambio de impresiones con una compañera. De ese modo efectúa su titubeante, sinuoso regreso a casa. Para no antropomórfica en relación con sus intenciones, voy a trazar su camino sobre un trozo de papel. Consiste en una sucesión de segmentos irregulares y en ángulo, si bien no se trata de una trayectoria al azar, puesto que va dirigida por un oculto sentido de la orientación, por la persecución de un objetivo. Muestro el esbozo a un amigo, sin darle explicaciones. ¿Quién recorre este camino? Un esquiador experto, tal vez, sorteando los obstáculos que le presenta una pendiente muy pronunciada y pedregosa. O acaso una chalupa, navegando contra viento por un río salpicado de islas y bajíos. Quizá sea un camino por un espacio más abstracto: el curso que sigue un estudiante en busca de la prueba de un teorema geométrico.
Juzgado como una figura geométrica, el camino de la hormiga es irregular, complejo, difícil de describir. Pero su complejidad, de hecho, es una complejidad en la superficie de la playa, no una complejidad en la hormiga. En la misma playa, otra diminuta criatura, con su casa en el mismo sitio que la hormiga, acaso siguiese un camino parecido.
Sea quien fuere el que recorrió el camino y donde quiera que éste se encuentre: ¿por qué no es recto, por qué su trayectoria no va directamente desde el punto de origen al de destino? En el caso de la hormiga (y, por las mismas razones, en los demás casos), conocemos la respuesta. Tiene un sentido general del lugar donde se encuentra su casa, pero no puede prever todos los obstáculos que le separan de ella. Una vez y otra, debe adaptar su camino a las dificultades con que tropieza y, a menudo, rodear barreras infranqueables. Sus horizontes están muy próximos, por lo que tiene que habérselas con cada obstáculo a medida que lo encuentra; sondea la forma de rodearlo o de sortearlo sin pararse a considerar cuáles serán los obstáculos futuros.
Hace años, Grey Walter construyó una a tortuga» electromecánica capaz de explorar una superficie y de buscar periódicamente su nido, donde se recargaban sus baterías. Últimamente, se han construido en varios laboratorios, entre ellos el del Profesor Marvin Minsky en Cambridge, Massachusetts, autómatas en pos de un objetivo. Supongamos por un momento que nos lanzásemos al diseño de uno de tales autómatas, que tuviera las dimensiones aproximadas de una hormiga, medios similares de locomoción y una agudeza sensorial comparable. Supongamos que pudiésemos dotarlo de unas cualidades de adaptación muy sencillas: al encontrarse con una pendiente muy empinada, trataría de subir por ella en línea oblicua; al enfrentarse con un obstáculo insuperable, trataría de rodearlo, etc. (A excepción de los problemas de miniaturización de los componentes.es casi seguro que el actual estado de la técnica saldría al paso de un proyecto de esta clase.) ¿En qué diferiría su comportamiento del de una hormiga?
Estas especulaciones apuntan una hipótesis, hipótesis que igualmente podría presentarse como corolario de nuestras previas argumentaciones en torno a los objetos artificiales:
Se trata de una hipótesis empírica, que puede ponerse a prueba al ver si, atribuyendo unas propiedades muy simples al sistema adaptador de la hormiga, nos es dado explicar su comportamiento en el medio dado o en otros similares. En virtud de las razones ampliamente expuestas en mi capítulo anterior, la verdad o falsedad de la hipótesis debería ser independiente de si las hormigas, juzgadas en forma más microscópica, son sistemas simples o complejos. A nivel de células o moléculas, puede demostrarse que las hormigas son complejas, si bien estos detalles microscópicos del medio interior tal vez nada tengan que ver con el comportamiento de la hormiga en relación con el medio externo. Esto explica por qué un autómata, pese a ser completamente diferente a nivel microscópico, podría simular a grandes rasgos el comportamiento de la hormiga.

Belén Stettler, oriunda de Río Gallegos, Santa Cruz, Argentina, cuenta con 35 años y es Licenciada en Ciencias de la Comunicación Social por la Universidad de Buenos Aires (UBA). A lo largo de sus 13 años de trayectoria en comunicación política, ha trabajado como consultora en Buenos Aires, especializándose en estrategia, investigación y comunicación directa. Ha dirigido equipos de comunicación en diversas campañas. Su experiencia incluye roles importantes en la Obra Social del Personal de Seguridad Pública de Buenos Aires, la Vicejefatura de Gobierno de Buenos Aires, Claves Creativas, Ford Argentina y AkzoNobel, iniciando su carrera en Grupo Suessa Organización Empresaria.
